Complete Spaces of Vector-Valued Holomorphic Germs.
نویسندگان
چکیده
منابع مشابه
Holomorphic vector-valued functions
exists. The function f is continuously differentiable when it is differentiable and f ′ is continuous. A k-times continuously differentiable function is C, and a continuous function is C. A V -valued function f is weakly C when for every λ ∈ V ∗ the scalar-valued function λ◦ f is C. This sense of weak differentiability of a function f does not refer to distributional derivatives, but to differe...
متن کاملOperator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملLimits in differential fields of holomorphic germs
Differential fields of germs of continuous real valued functions of one real variable (Hardy fields) have the property that all elements have limits in the extended real numbers and thus have a canonical valuation. For differential fields of holomorphic germs this is not generally the case. We provide a criterion for differential fields of holomorphic germs for its elements to have uniform limi...
متن کاملoperator valued series and vector valued multiplier spaces
let $x,y$ be normed spaces with $l(x,y)$ the space of continuous linear operators from $x$ into $y$. if ${t_{j}}$ is a sequence in $l(x,y)$, the (bounded) multiplier space for the series $sum t_{j}$ is defined to be [ m^{infty}(sum t_{j})={{x_{j}}in l^{infty}(x):sum_{j=1}^{infty}% t_{j}x_{j}text{ }converges} ] and the summing operator $s:m^{infty}(sum t_{j})rightarrow y$ associat...
متن کاملHolomorphic Dynamics near Germs of Singular Curves
Let M be a two dimensional complex manifold, p ∈ M and F a germ of holomorphic foliation of M at p. Let S ⊂ M be a germ of an irreducible, possibly singular, curve at p in M which is a separatrix for F . We prove that if the Camacho-Sad-Suwa index Ind(F , S, p) 6∈ Q ∪ {0} then there exists another separatrix for F at p. A similar result is proved for the existence of parabolic curves for germs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1994
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-12510